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A B S T R A C T   

Connectivity shapes species distribution, spatial population dynamics and genetic structure, and is critical for 
conservation. It is imperative to reliably identify factors that limit connectivity across heterogeneous, fragmented 
landscapes. Viewing connectivity as the persistence of movement in space from source to destination—along 
potential corridors simulated from correlated random walks—we adapt the dynamic occupancy modeling 
framework to present an approach to reliably quantify connectivity. This approach allowed us to estimate the 
probability of spatial persistence of movement along potential corridors, while accounting for imperfect detec-
tion of animal use of the matrix. We use simulations to test our model, and data from sign surveys of Asian 
elephant Elephas maximus space use in Garo Hills, Northeast India, as a practical application of the method. 
Distance to forests and ruggedness predominantly shaped elephant connectivity patterns. Negative effects of 
distance to forests were intensified at the onset of dispersal, and in the more disturbed part of our landscape. We 
mapped locations critical to maintaining connectivity in our study landscape. We demonstrate that the widely 
used occupancy modeling approach, when combined with appropriate field data collection, permits explicit 
assessment of matrix impacts on connectivity while accounting for imperfect detection of animal movement. In 
so doing, we highlight the value of the approach in enabling inference on where animals move, as well as why. 
Obtaining a reliable understanding of factors shaping connectivity is central to understanding and predicting 
species responses to environmental change, thereby facilitating effective long-term conservation in fragmented 
landscapes.   

1. Introduction 

Connectivity, which refers to the movement of individuals or genes 
among populations or habitats (Clobert et al., 2001), has major impli-
cations for species viability and evolution. Connectivity impacts adapt-
ability to novel habitats, demography, colonization of unoccupied 
habitat, species turnover, and inter-species interactions, among other 
effects (MacArthur and Wilson, 1967; Orrock et al., 2003; Fletcher et al., 
2016). Most endangered species are faced with habitat fragmentation 
(Crooks et al., 2017). Hence, connectivity is prioritized by conservation 
programs in an effort to mitigate negative consequences of habitat loss 
and fragmentation, land-use dynamics, and climate change, on biodi-
versity and species persistence. 

Our ability to observe animal dispersal—which shapes patterns of 
connectivity—and to model connectivity based on empirical observa-
tions, has vastly increased over the last two decades (McRae et al., 2008; 
Cagnacci et al., 2010). Methodological advances facilitate insights into 
the impacts of the matrix (e.g., McRae et al., 2008) and animal behavior 
(e.g., Vasudev and Fletcher, 2015) on connectivity patterns. In partic-
ular, GPS and satellite telemetry has drastically changed our ability to 
observe animal dispersal (Cagnacci et al., 2010). Consequently, not only 
is our understanding of processes that shape connectivity patterns 
improved, we are also able to predict future connectivity in the face of 
environmental change (e.g., Revilla and Wiegand, 2008), and provide 
conservation solutions for endangered species in fragmented landscapes 
(e.g., Vasudev and Fletcher, 2015). 
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Notwithstanding new methodological approaches, dispersal con-
tinues to be difficult to observe as it is an infrequent event that occurs at 
large spatial scales (Lima and Zollner, 1996). Telemetry, which offers a 
fine-scale view of long-distance animal movement, is expensive and 
requires invasive capture processes; while non-invasive approaches are 
subject to biases from partial observability, or the possibility that a 
disperser moves through a location but goes undetected. In this sense, it 
is a non-trivial issue to distinguish areas that are unused for dispersal (i. 
e., true absence of dispersal) from areas that are used but where dis-
persers move through undetected (i.e., non-detection of dispersal). 
Neglecting to account for such imperfect detection of dispersal can lead 
to underestimates of dispersal rates between populations, and to biased 
inference on the influence of landscape features on dispersal patterns 
(see Yackulic et al., 2013). These biases could further translate into 
inaccurate predictions of connectivity patterns, misleading de-
marcations of ‘critical’ corridors and stepping-stones, and consequently, 
inefficient connectivity conservation investments. 

Imperfect detection impacts our observation of a number of 
ecological patterns and processes, and analytical approaches that ac-
count for imperfect detection has allowed reliable inference on species 
demography (Ozgul et al., 2009) and richness (Boulinier et al., 1998), 
and human–wildlife conflict (Goswami et al., 2015). These approaches 
are broadly encompassed by the capture–recapture and occupancy 
modeling frameworks, which rely on replicated surveys to determine the 
probability of detecting the animal or ecological event of interest, given 
its presence (Williams et al., 2002; MacKenzie et al., 2018). 

These methods have been used previously to incorporate imperfect 
detection of dispersal events. Multistate capture–recapture models 
provide pair-wise population dispersal rates in metapopulations with 
marked individuals (e.g., Ozgul et al., 2009). Occupancy models with 
auto-logistic terms have been used to make inferences on connectivity 
(e.g., Yackulic et al., 2012) whereby a dispersal (and colonization) event 
is inferred if an unoccupied site is occupied at a subsequent time. These 
models, as applied till date, account for imperfect detection of species 
presence in patches. 

These are a class of methods that focus on sampling from source and 
destination patches (of dispersers) to make indirect inference on the 
impact of the intervening matrix on dispersal (e.g., using genetic as-
sessments: Broquet et al., 2006; capture–recapture: Ozgul et al., 2009). 
These methods can be contrasted with other approaches that make in-
ferences on dispersal through fine-scale information on individual dis-
persers in the matrix (e.g., radio-telemetry: Revilla and Wiegand, 2008; 
movement follows: Vasudev and Fletcher, 2015). Notwithstanding the 
utility of both classes of methods, an approach that addresses imperfect 
detection of disperser movement through fine-scale sampling in the 
matrix, can add substantially to our ability to directly infer matrix im-
pacts on species movement, understand dispersal patterns in heteroge-
neous landscapes, and implement connectivity conservation 
interventions. 

Ultimately, there has been slow progress on understanding why 
dispersal is limited; in fact, there are few species in heterogeneous 
landscapes for which we have clearly identified major limitations or 
threats to connectivity (Vasudev et al., 2015). These issues are partic-
ularly pertinent for wide-ranging species with large habitat re-
quirements, such as the endangered Asian elephant Elephas maximus. 
Most landscapes that house Asian elephants are under serious human 
impact (Leimgruber et al., 2003), fragmenting existing habitats, and 
making connectivity critical to the species (Goswami and Vasudev, 
2017). 

We propose an adaptation of dynamic occupancy models (MacKenzie 
et al., 2003; MacKenzie et al., 2018) to identify factors limiting elephant 
connectivity, while: (a) accounting for imperfect detection of animal 
movement; and (b) sampling at a fine-scale within the matrix to allow 
direct inference on the impacts of matrix characteristics on dispersal. 
Our data are from a heterogeneous, multiple-use landscape in Garo Hills, 
in the state of Meghalaya, Northeast India. We test our approach using 

simulations, and highlight how this widely applicable approach can 
provide reliable and comparable connectivity assessments, and impor-
tantly, better inference on the impact of landscapes elements on 
connectivity. 

2. Methods 

2.1. Study area 

Our study landscape in Garo Hills (25◦08′–25◦23′N; 
90◦37′–90◦58′E), Northeast India, comprises a mosaic of protected areas 
and other government-managed forests in a matrix of community- 
managed forests, agriculture and human habitation (see Goswami 
et al., 2014). Of the government-managed forests in the landscape, 
Balphakram National Park along with Siju Wildlife Sanctuary and 
Rewak Reserve Forest forms one block of contiguous protected habitat 
(hereinafter, ‘Balphakram’) that is physically separated from the Bagh-
mara Reserve Forest to the southwest (hereinafter, ‘Baghmara’) by other 
land uses. Earlier investigations have shown that these protected forest 
patches serve as primary habitat for elephants, while the community- 
managed forests and agricultural land uses play a subsidiary role of 
supporting elephant movement and secondary habitat use (Goswami 
et al., 2014). Following from these findings, here we assess factors 
shaping connectivity between the Balphakram and Baghmara patches of 
elephant habitat. Our landscape is therefore a two-patch system and our 
sampling space is the matrix that lies between the two focal patches. 

2.2. Quantifying connectivity 

We measure connectivity as the probability of successful dispersal, 
given initiation of dispersal (Vasudev et al., 2015), which broadly aligns 
with some commonly used measures of connectivity (Table S1). We posit 
that this definition, when scaled as a probability, is quantifiable and 
comparable across contexts. We condition the probability of successful 
dispersal on initiation of dispersal because once dispersal is initiated, 
landscape-related factors largely shape connectivity rather than within- 
population factors that may influence decisions of individuals to 
emigrate (Bowler and Benton, 2005). This rationale is used in other 
connectivity modeling approaches, and does not preclude examining 
edge effects, or movement impediments at the onset or extremely early 
stages of dispersal. We restrict our inference to potential connectivity—or 
the probability of an area being used for connectivity—rather than 
actual or realized connectivity, which represents the actual use of an area 
for connectivity. We do so as the realization of connectivity would be 
impacted by both landscape-scale drivers, and within-population factors 
such as population density. 

Connectivity is cumulative, in that it is achieved through the suc-
cessful completion of movement that initiates at a source patch, persists 
along a particular dispersal path or corridor, and concludes at a desti-
nation patch. Therefore, connectivity can be measured as the probability 
of animal movement persisting across space, from source to destination 
patches. 

The matrix can serve as both secondary habitat and movement cor-
ridors (Driscoll et al., 2013), but on-ground differentiation between ‘use’ 
and ‘movement’ is difficult. Here, we do not make this distinction; 
instead, we simply consider the spatial persistence of animal ‘use’ of the 
matrix, from the source patch to destination patches, as connectivity. 

2.3. Spatial dynamic occupancy model 

Occupancy models assess spatial variation in species distribution 
(MacKenzie et al., 2018). They have also been applied at finer scales to 
assess spatial patterns of animal ‘use’ across heterogeneous landscapes 
(e.g., Goswami et al., 2014). 

We quantify connectivity through a simple extension of dynamic 
occupancy models (MacKenzie et al., 2003, 2018). This approach 
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considers the occupancy state of sampling units to change from one 
season to the next, due to colonization or local extinction (MacKenzie 
et al., 2018). In the connectivity context, we consider sampling units to 
be subdivisions of the matrix corresponding to sections of potential 
dispersal corridors, some of which are surveyed. 

Whereas past applications of dynamic occupancy models have 
modeled the persistence of animal occupancy (or use) over time (i.e., 

across seasons) (e.g., Yackulic et al., 2012), here we use the same con-
ceptual and analytical framework to model persistence of animal use 
across space (Fig. 1a). We consider each ‘step’ along a spatial sequence of 
sampling units that originates at the source, and extends continuously 
within the matrix to end at the destination, to be equivalent to a season 
in traditional dynamic occupancy models. We model the persistence of 
animal use across space—or steps—along these predetermined spatial 

a

b

Fig. 1. (a) Schematic representation of change in ‘use’ of grid cells along a hypothetical potential corridor. Potential corridors are sequences of ‘steps’ or sampling 
units (grey squares) extending from the source to the destination patch (shown in green). We condition the model on use in the first step, which is at the edge of the 
source patch, that is, ψ1 = 1. Subsequently, used cells can become unused with an extinction probability ε and continue to be used with a persistence probability of 1 
– ε. Successful dispersal can occur when ‘use’ of grid cells persists from the source till the destination, all along the potential corridor (marked as green dashed 
rectangle). In contrast, when ‘use’ does not persist, this precludes successful dispersal (marked as yellow dashed rectangle. (b) We show the observational process in 
our model for one example potential corridor. For this hypothetical corridor, step 1 and 2 are used, while step 3 and 4 are not used. We show an example detection 
history considering three replicates per grid cell. In step 1, elephant signs are detected in replicate 1, but not detected in replicates 2 and 3, leading to a detection 
history of 100; and so forth. (c) We show three example potential corridors in the study area connecting habitat patches, Baghmara and Balphakram, overlaid on the 
sampled grid network. The three example corridors each represent a scenario where: (i) use persists along the corridor (successful dispersal); (ii) use does not persist 
along the entire length of the corridor (unsuccessful dispersal); and (iii) use does not persist past the edge of the source patch (edge effects). The inset shows the 
location of the study area in India. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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sequences of sampling units, henceforth, ‘potential corridors’ (Fig. 1b). 
Thus, in our model, we use (a) steps in place of temporal units (seasons) 
of traditional dynamic occupancy models, and (b) potential corridors 
(representing a sequence of steps) as the unit of inference (Fig. 1; 
Table S2). Along each corridor, animals can only proceed by passing 
through the identified steps in a sequential manner. 

Dynamic occupancy models allow us to then assess the impact of 
different covariates on parameters of the model, namely (a) the persis-
tence (or 1 – extinction) of animal use along potential corridors, and (b) 
colonization of movement routes, representing a funneling effect 
whereby corridors attract dispersers from their immediate neighbor-
hood. For each potential corridor, we can also calculate the probability of 
successful dispersal as the probability of animal use persisting through all 
of its steps from source to destination. 

φs = ψ1
s ×

∏n− 1

i=1

(
1 − εi

s

)
(1)  

where, φs is the probability of successful dispersal along potential 
corridor s, and εs

i is the probability of extinction from movement step i to 
step i + 1, along n steps of the corridor. ψs

1 is the probability of the 
animal using the first step of the potential corridor, and when this 
quantity is equal to 1, φs becomes the probability of successful dispersal, 
conditional on initiation of dispersal along potential corridor s. We note 
that the probability of successful dispersal corresponds to at least one 
animal starting at the source and successfully reaching the destination; it 
does not take into consideration the number of animals that have 
emigrated from the source patch, nor does it include colonizers of cor-
ridors, even if such individuals end up reaching the destination. 

Through this model, patches that are farther apart, or potential 

corridors that are more circuitous, automatically get penalized through 
an increased number of movement steps (see Eq. (1)). That is, longer 
corridors entail a greater number of steps, and hence are subjected to 
more extinction parameters. This is in consonance with established 
impacts of distance on successful dispersal (MacArthur and Wilson, 
1967). Further, factors that lead to the preclusion of successful dispersal, 
or positively influence extinction probability εi

s, can be identified as 
limits to dispersal. By increasing εi

s, these factors would reduce the 
probability of successful dispersal φs in Eq. (1). Thus, a short corridor 
with high extinction probability may turn out to be less successful than a 
more circuitous corridor with low probabilities of extinction; this aligns 
with our understanding of isolation by resistance (McRae et al., 2008). 
Taken together, both length of the corridor (through increased number 
of steps) and matrix impermeability (through higher extinction proba-
bility) impact the probability of successful dispersal. 

Key assumptions of the spatial dynamic occupancy model are anal-
ogous to those of the standard dynamic occupancy model (MacKenzie 
et al., 2003). (1) The use state of a sampling unit does not change (or 
changes randomly) over replicated surveys within a step. The use of 
sampling units change from one step to the next through the coloniza-
tion and extinction processes. (2) Heterogeneity in colonization and 
extinction probabilities from one step to the next, across potential cor-
ridors, is modeled using appropriate covariates. (3) Detection proba-
bility is either constant across space, or if spatially heterogeneous, is 
modeled appropriately. (4) Species use of grid cells along potential 
corridors is Markovian, the validity of which can be tested using the non- 
Markovian parameterization of the model. (5) There are no false posi-
tives in species detection, arising potentially from species misidentifi-
cation. Our model differs from previous applications of dynamic 
occupancy models to the study of connectivity (e.g., Yackulic et al., 

c

Fig. 1. (continued). 
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2012) in (a) directly modeling the persistence of movement across 
space, and (b) sampling fine-scale animal use of the matrix. This allows 
us to directly model impacts of landscape characteristics on the proba-
bility of successful dispersal. 

2.4. Potential corridors 

We overlaid a 1 km × 1 km grid network over the study area using 
Quantum GIS (QGIS.org., 2019). We generated potential corridors based 
on simulated correlated random walks, a model that is used extensively 
across taxa to model animal movement (Bovet and Benhamou, 1988), 
modified to include some restrictions described below. We modeled 
both Balphakram––the larger and more undisturbed habitat fragment in 
the landscape––as the source with Baghmara as the destination, and vice 
versa. We generated 100 potential corridors for each source, restricting 
the corridor length to 50 km. 

To generate potential corridors, we followed the following steps. 
First, we identified ‘exit points’ at the boundary of the source patch at a 
resolution of 100 m. For each random walk, we chose an exit point and 
start direction from a uniform distribution. Step lengths were sampled 
from a Weibull distribution with a mean of 100 m. We chose turning 
angles from a wrapped Cauchy distribution, with a mean of 0, and a 
shape parameter ρ randomly chosen from a uniform distribution, for 
each route. We thus generated both relatively straight-line pathways as 
well as those that were more tortuous. We then generated a random 
walk with the above-described values. We discarded paths that did not 
enter the destination patch before accumulating a total path length of 
50 km, and only included paths that lead from the source to the desti-
nation. Thus, all paths had their initial step at the edge of the source and 
their last step at the edge of the destination patch. Animals could leave 
from any part of the perimeter of the source, and enter the destination at 
any point along its edge. 

We superimposed the 100 generated walks onto the 1 km × 1 km grid 
network, and identified the sequence of grid cells that encompassed each 
random walk. Each grid cell represented a sampling unit or a ‘step’. This 
sequence of grid cells now represented the configuration or sequence of 
‘steps’ along potential corridors (see Fig. 1b for example corridors). We 
thus had 100 potential corridors for each of the two sources in our 
landscape; we note that these 100 are a sample of a near-infinite number 
of potential corridors in the landscape. These and subsequent analyses 
were conducted in R (R Development Core Team, 2019). 

Potential corridors had a maximum of 30 steps in our model. These 
corridors are representative of 1-km wide movement swathes that 
stretch from the source patch to the destination patch, encompassing 
one or more potential movement paths of elephants. Since occupancy 
models are currently designed for sampling units to have the same 
number of seasons, we artificially extended potential corridors to 
accommodate extra steps at their last grid cell where necessary, such 
that all potential corridors had the same number of steps. This extension 
was only used when estimating parameters within the occupancy 
modeling framework; we set extinction of these ‘dummy’ steps to 
0 while calculating probabilities of successful dispersal for each poten-
tial corridor. 

2.5. Simulation 

Dynamic occupancy models have been previously tested through 
simulation (MacKenzie et al., 2003). We therefore focused our simula-
tions to test the robustness of this approach in estimating the impact of 
covariates on extinction probability εi

s, our parameter of primary inter-
est. We considered a simple context of two matrix types: an inhospitable 
matrix where persistence of movement was low, compared to a hospi-
table matrix. Thus, in our simulation, there was a single categorical 
factor influencing extinction probability. In real-world applications, 
there may be multiple such categorical or continuous covariates that 
lead to spatial variation in extinction probability. Each grid cell was 

randomly assigned to either one of these two matrix types. We ran 100 
simulations for multiple scenarios of matrix permeability (Table S3). 

We simulated animal movement along potential corridors generated 
as described above, based on randomly chosen values of ε for the hos-
pitable and inhospitable matrix (Table S3). We denoted a grid cell as 
used if an animal moved through it in their simulated walks along at 
least one potential corridor. We simulated detection histories based on a 
randomly chosen detection probability. We then estimated model pa-
rameters based on simulated detection histories, using the spatial dy-
namic occupancy model. The simulations of animal pathways were 
independent of the fitting process. 

For each simulation, we noted the mean squared error between the 
estimated extinction parameter ε̂ and the true value of the parameter, 
and that of the ratio of extinction rates of the two matrix types based on 
their true and estimated values. To test for biases arising due to the 
number of simulated potential corridors, and the number of dispersal 
events, we varied these randomly for each simulation (Table S3). 

2.6. Field data collection 

A significant part of our study landscape was remote and difficult to 
access. Hence, we used spatial replication for our survey (MacKenzie 
et al., 2018) where each spatial replicate constituted a 300 m walk in a 
pre-determined direction. We walked between 0 and 13 spatial repli-
cates in each grid cell. Unsampled replicates were included as missing 
data. The field data were collected as part of a larger research project 
assessing the conservation value of the landscape; further details on the 
sampling design can be found in Goswami et al. (2014). 

Between January 2011 and February 2012, we invested a total walk 
effort of approximately 540 km, and recorded 2225 detections of 
elephant presence based on recent signs, primarily their dung (96.4%). 
There was no temporal ordering to our sampling (i.e., we did not sample 
source cells first and destination cells last, or vice versa). We recorded 
the following ground-based covariates: land use, which included the 
categories forest, jhum fallow (i.e., areas undergoing varying stages of 
successional regeneration following the abandonment of slash-and-burn 
shifting cultivation), monoculture plantation and human habitation; 
and, the presence of water bodies. 

2.7. Occupancy analyses 

For each grid cell, we recorded the following remotely-sensed 
covariates: Euclidean distance to the source patch; distance to forests, 
which was the shortest distance between the grid cell centroid and any 
forest in the landscape; ruggedness index, which is a measure of the 
variation in elevation across the grid cell (Riley et al., 1999); and mean 
village density. We used QGIS and ArcGIS (Environmental Systems 
Research Institute, Redlands, USA) to calculate these covariates. 

We estimated the following parameters in our extension of the 
standard dynamic occupancy model (see MacKenzie et al., 2003): (1) ψ s

1, 
which is the occupancy in the first step for movement route s; (2) εs

i, 
which is the extinction probability (1 – persistence) for step i in corridor 
s, (3) γs

i, which is the colonization probability for step i of corridor s, and 
(4) p, which is the probability of detecting animal use of a grid cell in a 
replicate, given that the grid cell has been used. As we define dispersal 
success conditional on emigration, and we know that elephants use the 
source patch (Goswami et al., 2014), we set ψs

1, or the probability of use 
in the first step, as 1. 

Following Goswami et al. (2014), we first identified the most 
appropriate model structure for detection probability p, while using the 
most general model for other parameters (i.e., we modeled ε and γ as 
functions of additive effects of all considered covariates). We modeled p 
as a function of (a) ruggedness index, (b) land use as categorized above, 
and (c) additive models of the above two covariates. However, models 
incorporating land use failed to converge. We chose the most appro-
priate model based on Akaike’s Information Criterion, corrected for 
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small sample sizes (AICc; Burnham and Anderson, 2002). 
We fixed p to the model chosen above, and allowed extinction 

probability ε and colonization probability γ to vary as a function of 
covariates of interest. We modeled ε as a function of distance from 
source fragment, distance to forests, ruggedness index, village density 
and the presence of water bodies, and additive effects of the above. 
Additionally, we assessed disperser fatigue, that is, if persistence 
decreased as the disperser progressed farther along a particular move-
ment corridor or if limits to dispersal impact extinction more at later 
stages of dispersal. We did this by including the additive and interactive 
impacts of step identity, a numerical identifier that ranged from 1 to 29 
and denoted where the grid cell was located along a sequence of steps in 
a potential corridor. We also modeled the effect of distance to forest on 
εs

1 to assess if the onset of dispersal is impacted by the presence of 
community forests (forests outside the sources and destinations in our 
landscape), that is, if community forests mitigated edge effects of less 
permeable matrix types. 

We expected the presence of water bodies, distance to forests, dis-
tance to protected areas (which excluded community forests), and the 
contrast between the village density of a grid cell and that of its im-
mediate neighborhood (henceforth relative village density), to poten-
tially impact colonization probability γ. We included additive models of 
the above-listed covariates. Throughout, we checked for multi- 
collinearity before including more than a single covariate in models. 

The assumption of spatial dependency in species use of the land-
scape, that is, the dependency of ψ s

i+1, or the use of potential corridor s at 
movement step i + 1, on ψ s

i is fundamental to our model. To test the 
validity of this assumption, we included a model wherein we fixed 
extinction probability ε to 1 – γ (1 – colonization probability). In setting 
ε = 1 − γ, the probability of use of a potential corridor s at movement 
step i + 1, calculated as: 

ψi+1
s = ψi

s ×(1 − ε)+
(
1 − ψi

s

)
× γ  

reduces to: 

ψi+1
s = γ = 1 − ε 

Thus, in this model parameterization, species use of grid cells along 
potential corridors becomes non-Markovian (MacKenzie et al., 2003). 
We compared this model to one where extinction and colonization 
probabilities were spatially invariant but estimated separately, that is, 
based on Markovian dynamics. We used program MARK (White and 
Burnham, 1999) implemented in R through the RMark library (Laake 
and Rexstad, 2007) to run the dynamic occupancy models. We modeled 
dispersal from Balphakram, and from Baghmara, separately, as two 
distinct model sets, as factors limiting dispersal may differ between 
these two contexts. 

From the chosen model, we noted the impact of covariates on ε (1 – 
persistence) of movement across space within the matrix. We estimated 
the probability of successful dispersal for each potential corridor φs as 
per Eq. (1), using the above extinction probabilities. We mapped the 
above-calculated success probability for each grid cell; if a grid cell was 
part of more than one potential corridor, we assigned it the maximum 
value of the estimated probability of successful dispersal across corri-
dors. Finally, as forest edges become increasingly hard, and with the 
fencing of certain forests (Goswami and Vasudev, 2017), it is sometimes 
important to identify potential ‘entry’ and ‘exit’ points from and to 
primary habitats that are critical to maintain connectivity. To identify 
these, we quantified an Edge Importance Index by simply adding the 
probability of successful dispersal across all potential corridors that a 
particular grid cell either commences or ends in. 

3. Results 

3.1. Simulation 

Simulations suggest that the model was able to estimate extinction 
probability with more precision at relatively low ‘true’ values. We were 
able to estimate relative extinction parameter estimates between the 
hospitable and inhospitable matrix (that is, the coefficients linked to the 
extinction parameter) with more precision when true parameter values 
were not very low (Fig. S1). The estimators were robust to changes in 
detection probability, the proportion of the landscape that comprised 
hospitable matrix, number of simulated potential corridors, and number 
of ‘used’ corridors (results not shown). The number of potential corri-
dors impacted representation of grid cells (Fig. S2), but did not have 
substantial effects on uncertainty around parameter estimates, except 
for very small numbers of potential corridors (Fig. S3). 

3.2. Detecting animal movement 

Detection probability was consistently estimated to be <1, support-
ing the claim that partial observability is relevant to recording animal 
movement. The overall probability of detecting animal movement (or 
use of a site for movement) per sampling replicate within a grid cell ps

i, as 
estimated by the best supported model where detection probability was 
spatially invariant (i.e., constant), was: (a) 0.53 (95% CI = 0.50–0.54) 
when Balphakram was modeled as the source; and (b) 0.58 (95% CI =
0.57–0.59), when Baghmara was modeled as the source. However, 
irrespective of the source, there was substantially greater support for a 
model that included effects of ruggedness on detection probability 
(Table S4). Detection probability was negatively influenced by rugged-
ness, that is, we are able to detect animal use of a sampling unit, given 
use of the unit, better on more even terrain (Tables S5 and S6; Fig. S4). 

3.3. Spatial variation in movement 

There was little support for the model where ε = 1 − γ; the difference 
in AICc between this model and a Markovian model where the two pa-
rameters were spatially invariant (i.e., the intercept-only ε[.], γ[.] 
model) was 2412.95 and 625.95 for when Balphakram and Baghmara 
were the source, respectively. This lends strong support to our 
assumption of spatial dependence in use of grid cells along potential 
corridors. 

When Balphakram was the source, one model received clear support 
with ΔAICc > 2 for all other models (Table S5; Burnham and Anderson, 
2002). For movement in the opposite direction with Baghmara as the 
source, three models were within ΔAICc of 2 (Table S5). We present 
results from the top model in the first case, and from the most general 
model among the three models for which ΔAICc < 2, when Baghmara 
was the source. Results were qualitatively similar for both model sets, 
with the same model receiving support irrespective of the source of 
dispersal. 

Extinction probability varied based on an interactive effect of step 
identity and distance to forests, and an additive effect of ruggedness 
(Tables S5 and S6, Fig. 2). Extinction probability increased with distance 
to forests (including both government- and community-managed for-
ests), nearing 1 as corridors extended to 4 km away from the closest 
forest (Fig. 2). This effect was stronger when elephants dispersed out of 
Baghmara, the more disturbed habitat patch (Table S6). The increase in 
extinction probability with greater distance to forests, was intensified at 
later stages of dispersal when Balphakram was the source; or viewed 
another way, when the destination (Baghmara) was a more disturbed 
habitat patch (Fig. 2). The effect was the opposite when Baghmara was 
the source. Furthermore, the impact of distance to forests in increasing 
extinction probability (or conversely, reducing the persistence of 
movement) was intensified substantially at the onset of dispersal 
(Fig. 2). Extinction probability also increased with ruggedness, though 
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this relationship was relatively weak (Table S6, Fig. 2). 
Colonization probability varied with relative village density (the 

difference between village density of a grid cell, and its neighborhood; 
Fig. S5). When grid cells had village densities much lower than their 
neighborhood, colonization probability was high; it dipped when village 
density at a site was comparable to that in its neighborhood (Fig. S5). 
Colonization probability was higher closer to forests. Contrary to ex-
pectations, the presence of water bodies decreased the probability of 
colonization of a grid cell (Fig. S5). Estimates of the impact of the above 
covariates on model parameters are provided in Table S6. 

3.4. Probability of successful dispersal and edge importance index 

The probability of successful dispersal averaged across all simulated 
potential corridors was 0.03 ± 0.004 (mean ± SE; probability of suc-
cessful dispersal from Balphakram = 0.04 ± 0.007, and from Baghmara 
= 0.02 ± 0.004, Fig. S6). We show the probability of successful dispersal 
across grid cells in Fig. 3a. The Edge Importance Index of grid cells 

adjoining the two focal patches, which was the cumulative probability of 
successful dispersal across all corridors passing through those ‘entry’ or 
‘exit’ points, is shown in Fig. 3b. The grid cells with high probability of 
successful dispersal loosely form a wider movement zone, or corridor, 
between Balphakram and Baghmara (Fig. 3a). 

4. Discussion 

Dispersal is an infrequent event that plays out over large landscapes. 
Clearly, the issue of partial observability is pertinent for unbiased 
inference. Detection probability was consistently <1 in our study 
(Fig. S4) and it varied with the same ecological covariate (namely 
ruggedness) as our parameter of interest: extinction probability of 
movement across space. This evidence lends credence to the need to 
account for models that deal with imperfect detection for reliable 
inference on connectivity and limits to successful dispersal (see Yackulic 
et al., 2013). By adapting the rapidly developing occupancy modeling 
framework (MacKenzie et al., 2018), we demonstrate a method that is 
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Fig. 2. Extinction probability when dispersing from (a) 
Balphakram or (b) Baghmara, varied as an interactive 
function of distance to (government- and community- 
managed) forest and stage of dispersal, wherein extinc-
tion probability increased as the animal moved farther 
away from forests, and this relationship intensified at 
later stages of dispersal when originating from Bal-
phakram, but early stages when originating from Bagh-
mara. The onset of dispersal was strongly influenced by 
distance from forests (shown as the first column). 
Extinction probability was also weakly but positively 
influenced by ruggedness.   
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a

b

Fig. 3. (a) Probability of successful dispersal for grid cells between two protected area patches in the Baghmara-Balphakram landscape, Meghalaya, Northeast India, 
showing their contribution to connectivity through potential corridors, and (b) Edge Importance Index of grid cells adjoining the habitat patches, showing their 
contribution to connectivity as ‘entry’ and ‘exit’ dispersal points. 
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non-invasive, widely accessible to conservationists, applicable to a 
broad range of taxa and landscapes, and ultimately, an approach that 
has much potential to spur better understanding of limits to successful 
dispersal in heterogeneous landscapes. 

4.1. Probability of successful dispersal as a metric for landscape 
connectivity 

There are several metrics to describe connectivity. Still there is a lack 
of clarity on the relationship between such metrics, the robustness and 
comparability across contexts, and their relation to ecological processes 
(Calabrese and Fagan, 2004). Developments in scientific decision- 
making approaches, such as structured decision modeling and adap-
tive management (Martin et al., 2009), have seldom been considered in 
the field of connectivity conservation. We suggest that one of the reasons 
for this lag is that there are few metrics that translate easily into the 
quantifiable objective functions required for these approaches. 

We posit that the metric we use, namely the probability of successful 
dispersal, presents advantages as a quantifiable metric that describes 
connectivity, while aligning with other commonly used metrics and 
definitions (Table S1). As the metric is scaled as a probability, it is 
comparable across taxa, landscapes, and time. Consequently, it can be 
adapted to objective functions within systematic decision-making ap-
proaches. Additionally, this metric is rooted in ecological theory and its 
biological significance is clear (Vasudev et al., 2015). We provide a 
method to identify limits to dispersal (Fig. 2), which can also feed into 
these models to inform conservation. 

While we identify (a) grid cells, and a ‘movement zone’ or corridor, 
with high probability of successful dispersal, and (b) critical ‘entry’ and 
‘exit’ points (Fig. 3), we emphasize that these can change over time. The 
critical ‘entry’ and ‘exit’ points were not restricted to the ‘movement 
zone’ (Fig. 3a and b), emphasizing the need for caution in fencing forests 
or otherwise obstructing animal movement in and out of habitats. 
Following from Vasudev et al. (2015), we suggest that these predictions 
of where animals move are not as important as inference on why they 
move through certain places and not others. 

We clarify that the probability of successful dispersal relates to the 
probability of at least one animal dispersing, that is, it does not make any 
assumptions on the number of animals dispersing. This is true for most 
applications of presence/absence data, or detection/non-detection data 
used in occupancy models, where a site that is occupied, may be occu-
pied either by a single animal or more than one animal. Since it does not 
make this assumption, the model can be used for both gregarious species 
moving in groups as well as solitary dispersers. That said, an extension of 
the dynamic occupancy model does allow multiple states of species 
occurrence to be combined with transitions arising due to colonization 
and extinction processes (MacKenzie et al., 2009); these states can be 
used to represent low-intensity versus high-intensity space use (Gos-
wami et al., 2014). Adapting the multistate dynamic occupancy model 
(MacKenzie et al., 2009) to quantify connectivity might allow potential 
corridors to be distinguished based on their frequency of use. However, 
certain corridors that are infrequently used may still be critical to 
maintaining metapopulation persistence, and should be prioritized for 
conservation. 

4.2. Limits to dispersal 

Even though elephants are wide ranging and frequent non-forested 
habitat, our findings show that connectivity had little chance of suc-
cess farther than 4 km from forests. This highlights the need to protect 
forested corridors between populations. The importance of proximity to 
forests increased closer to Baghmara, a habitat patch that adjoins an 
urban center, has a major road traversing through it, and as a reserve 
forest, is accorded a lower level of legal protection than the more remote 
Balphakram National Park. It is conceivable therefore that elephants 
should have a higher threat perception outside forests nearer to 

Baghmara than Balphakram. Therefore, the effect of distance to forests, 
interacting with the length of corridors, is likely to be a manifestation of 
elephants’ response to a perceived risky and unsuitable matrix. This is 
further substantiated by our finding that during the onset of dispersal, 
extinction probability of elephant movement increased with distance to 
forests (Fig. 2). In real-world contexts, geographic isolation of pop-
ulations and habitats is likely to be accompanied by an increased hos-
tility of the matrix; our results indicate that these two factors occurring 
in unison, is likely to have a compounded and disproportionately strong 
negative impact on connectivity. 

Lands between protected areas can serve as both secondary habitat 
and movement conduits (Driscoll et al., 2013). Goswami et al. (2014) 
found that the value of the matrix in this landscape as habitat depended 
on distance to government-managed forests and village density. Here, 
we show that the use of the same lands for movement (during the same 
time period) is impacted by ruggedness and the distance to forests (in-
clusive of both government- and community-managed forests). While 
we did not distinguish between these two roles of the matrix during data 
collection, the distinct analytical approaches used in Goswami et al. 
(2014) and here, throw to light the different constraints to elephant use 
of the landscape as secondary habitat, and their use of it for movement, 
respectively. 

Village density did impact movement, but by exerting a funneling 
effect on potential corridors. Water bodies also exerted the same effect, 
but contrary to expectation, they decreased the probability of new dis-
persers using a corridor. Garo Hills largely harbors wet vegetation types, 
and hence water in itself may not be a limiting factor for animal space 
use or movement. Rather, water bodies here may be serving as a proxy 
for an underlying and unobserved factor, such as the increased activity 
of humans around water bodies. We note that colonization in our model 
could emerge from an animal entering a corridor from the matrix, or 
from grid cells featuring in more than one potential corridor. 

4.3. Recommendations for future studies 

We present a non-invasive, feasible approach to studying a burning 
question in connectivity research and conservation: what limits 
dispersal? The first step to implementing this approach would be to 
identify source and destination patches. These can be protected areas, 
potential habitats for viable or breeding populations, or polygons of high 
habitat suitability. The matrix interspersing these source habitats would 
be the target survey area. We recommend subdividing this space into 
sampling units (e.g., grid cells) of appropriate size. We chose grid cells of 
size 1 km2 based on a scale that is: (a) ecologically appropriate, as the 
study species likely perceives the landscape and takes movement de-
cisions at this scale; (b) relevant for conservation, as corridors are often 
this width or more; and (c) methodologically appropriate, as local 
spatial homogeneity is maintained within grid cells in the landscape. 
The spatial dynamic occupancy model can provide insights into limits to 
connectivity at this scale, but is not designed to assess finer-scale (i.e., 
within grid cell) movement decisions. 

The sampling units should be surveyed within an occupancy 
framework (MacKenzie et al., 2018), recording species presence and 
appropriate covariates that may restrict or facilitate animal movement. 
We note that estimates of ε are dependent on the size of the grid cell: the 
larger the grid cell, the fewer the steps in each corridor, and the higher 
will be the value of ε Thus, we recommend making inference on factors 
impacting ε, and on the probability of successful dispersal φs, for the 
entirety of movement from source to destination. There is a trade-off 
between two major, and opposing, considerations that go into deter-
mining the number of potential corridors. One, that the majority of 
sampling units that may play a role in connectivity need to be repre-
sented in at least one potential corridor. Second, we would want to limit 
representation of a single sampling unit in multiple potential corridors. 
It is unavoidable that certain sampling units, simply by virtue of their 
geographic location, will be represented more frequently than others. 
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However, we would want to limit such over-representation. Our chosen 
number of 100 potential corridors provides a nice balance between these 
two criteria (Figs. S2 and S3). 

5. Conclusion 

The importance of separating ecological processes from sampling 
processes has been widely recognized in the study of animal populations 
and communities (e.g., Yackulic et al., 2013), and the utility of inference 
thus obtained for informed conservation (Martin et al., 2009). Connec-
tivity modeling and conservation lags far behind in this regard, despite 
the relevance of partial observability issues for the large-scale infrequent 
processes shaping connectivity patterns. Further, there is a critical 
knowledge gap on limits to successful dispersal in real-world conser-
vation landscapes (Vasudev et al., 2015). Obtaining reliable inference on 
these drivers of connectivity can greatly enhance our understanding of 
how animals move across landscapes. In turn, this will improve our 
ability to understand impacts of ecological and anthropogenic factors on 
species connectivity and landscape-level persistence, and predict their 
responses to environmental change. Ultimately, this will enable us to 
better conserve species in heterogeneous, human-dominated 
landscapes. 
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